1990). No radical cation could be found for (III), this being attributed to the lability of an H atom out of the molecular plane whereas (IV) gave a radical cation with the electron delocalized over the whole molecule. For (II) also the electron of the radical cation was shared between the two halves of the molecule while in (I) it was isolated on one pyrrole entity.

We are grateful to the SERC for the partial funding for the diffractometer, and to University College, London, for the award of a Thomas Witherden Batt scholarship to DVA.

References

- ALLEN, F. H., KENNARD, O., WATSON, D. G., BRAMMER, L., ORPEN, A. G. & TAYLOR, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- ATWOOD, J. L., HRNCIR, D. C., WONG, C. & PAUDLER, W. W. (1974). J. Am. Chem. Soc. 96, 6132–6136.
- AVILA, D. V. & DAVIES, A. G. (1990). J. Chem. Soc. Faraday Trans. 86, 3243–3246.
- FERGUSON, G. & MCALEES, A. J. (1990). Acta Cryst. C46, 1241-1244.
- SHELDRICK, G. M. (1986). SHELXTL-Plus. Revision 2.2. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
- SHELDRICK, G. M. (1987). SHELXTL-Plus. Release 3.4 for Nicolet R3m/V crystallographic system. Nicolet Instrument Corporation, Madison, Wisconsin, USA.

Acta Cryst. (1991). C47, 1667-1670

Structures Cristallines et Electroniques de Deux Dérivés de l'Oxaphénalène: les 2-Acétyl- et 2-Méthoxycarbonyl-6-méthoxynaphto[1,8-*bc*]pyranes

PAR J.-P. BIDEAU ET M. COTRAIT

Laboratoire de Cristallographie, URA 144 du CNRS, Université de Bordeaux I, 351 Cours de la Libération, F-33405 Talence CEDEX, France

ET J.-P. BUISSON ET P. DEMERSEMAN

Service de Chemie, Institut Curie, 26 rue d'Ulm, URA 1387 du CNRS, F-75231 Paris CEDEX 05, France

(Reçu le 15 octobre 1990, accepté le 10 décembre 1990)

Abstract. 2-Methoxy-8-oxatricyclo[7.3.1.0^{5,13}]trideca-1(13),2,4,6,9,11-hexen-7-yl methyl ketone, $C_{15}H_{12}O_3$ (I), $M_r = 240.3$, orthorhombic, $P2_12_12_1$, a = $6.893(1), \quad b = 11.108(1), \quad c = 15.320(3)$ Å, V =1173 Å³, Z = 4, $D_x = 1.361 \text{ Mg m}^{-3}$, $\lambda(\text{Cu } K\alpha) =$ 1.54178 Å, $\mu = 0.684$ mm⁻¹, F(000) = 504, T = 298 K, R = 0.041 for 1158 observed reflections. 2-Methoxy-8-oxatricylo[7.3.1.0^{5,13}]trideca-1(13),2,-4,6,9,11-hexene-7-carboxylic acid methyl ester, $C_{15}H_{12}O_4$, (II), $M_r = 256.3$, monoclinic, $P2_1/n$, a = 13.561 (4), b = 5.034 (1), c = 18.277 (4) Å, $\beta =$ $104.42 (3)^{\circ}$, $V = 1208 \text{ Å}^3$, Z = 4, $D_x = 1.409 \text{ Mg m}^{-3}$ $\lambda(\text{Cu } K\alpha) = 1.54178 \text{ Å}, \ \mu = 0.86 \text{ mm}^{-1}, \ F(000) = 536,$ T = 298 K, R = 0.034 for the 1301 observed reflections. The oxaphenalene nuclei of (I) and (II) are quasi-planar and the double bond between C(2) and C(3) showed a greater ethylenic character than that observed in the 2-nitronaphthofuran series.

Introduction. Parmi les substances les plus génotoxiques actuellement connues figurent certains dérivés des arénofurannes et particulièrement des 2nitronaphto[2,1-b]furannes (Royer & Buisson, 1986; Ajana, Bideau, Cotrait, Buisson, Demerseman, Einhorn & Royer, 1988).

Il a été montré que des 2-nitro oxaphénalènes, méthoxylés ou non, possèdent également un très haut pouvoir génotoxique (Royer, Buisson, Vleminckx & Moens, 1986). Ces oxaphénalènes substitués en 2 dérivent d'un squelette qui possède certaines analogies avec celui des aréno-furannes déja évoqués. Au cours des études spectroscopiques dont ils ont fait l'objet (Platzer, Buisson & Demerseman, 1991), il est apparu en RMN du proton, des déplacements chimiassez surprenants de certains signaux ques caractéristiques de ces molécules, qui impliquent des distributions perturbées. C'est afin de pouvoir établir des relations structure-activité comparatives entre les deux séries naphtofurannique et oxaphénalique que nous avons entrepris une étude structurale radiocristallographique et électronique de deux représentants de cette dernière série: le 2-acétyl-6-méthoxynaphto[1,8-bc]pyrane (I) et le 2-méthoxycarbonyl-6-méthoxynaphto[1,8-bc]pyrane (II).

Les dérivés nitrés en position 2, avec un groupement nitro à la place des groupements 2-acétyl (I) et

© 1991 International Union of Crystallography

2-méthoxycarbonyl (II) n'ont, pour l'instant pu etre cristallisés.

Partie expérimentale. Les composés (I) et (II) ont été préparés selon le protocole que nous avons récemment décrit (Buisson & Royer, 1988). Des cristaux de couleur rouge (I) et jaune-vert (II), ont été obtenus par lente évaporation de solutions dans l'éthanol. Dimensions des cristaux: $0.2 \times 0.4 \times 0.8$ mm (I) et $0,15 \times 0,3 \times 1,0$ mm (II); 25 réflexions avec θ compris entre 21 et 45° (I) 22 et 47° (II) ont été utilisées pour le réglage des deux cristaux; largeur de balayage de $(2,0 + 0.35 \text{tg}\theta)$ (I) et $(1,5 + 0.15 \text{tg}\theta)^{\circ}$ (II); largeur de fente du détecteur de $(1,3+1,1tg\theta)$ (I) et $(1,8+1,1tg\theta)$ $(0.5 \text{tg}\theta)^{\circ}$ (II); mesure des intensités diffractées avec un diffractomètre Enraf-Nonius CAD-4 pour $\sin\theta/\lambda <$ $0,65 \text{ Å}^{-1}$ [$h \le 8, k \le 14, l \le 19$ (I) et $\hat{h} \le 15, k \le 5, l$ ≤ 21 (II)] avec un balavage $\omega - 2\theta$; correction d'absorption expérimentale; pas de décroissance des intensités de référence 254, 241 et 234 (I), 105 et 002 (II); 1158 (I) et 1301 (II) réflexions indépendantes avec $I > 2.5\sigma(I)$ ont été obtenues; la structure a été résolue grâce au programme MITHRIL (Gilmore, 1984); paramètres affinés par la méthode des moindres carrés (blocs diagonaux); facteurs d'agitation thermique anisotrope pour les atomes C et O; atomes d'hydrogène localisés sur les sections différence de Fourier et affinés avec des facteurs d'agitation thermique isotrope. Pour les méthyles des groupements acétyle et acétate de méthyle terminaux,

Fig. 1. Représentation ORTEP (Johnson, 1965) des molécules (a) (I) et (b) (II).

il y a une certaine délocalisation par suite de la rotation des groupes méthyle. Les hydrogènes des composés (I) et (II) ont été placés en position décalée respectivement par rapport aux liaisons C(2)—O(1)et C(16)-O(17), à partir des maxima de densité des sections différence de Fourier.

 $w(|F_o| - |F_c|)^2$ a été minimisé avec $w = w_o/1 + |a(|F_o| - b)|^2$ où a = 0,03, b = 10 et $w_o = 2|F_o|/F_o^2$; les facteurs de diffusion de International Tables for X-ray Crystallography (1974, Tome, IV) pour les atomes non-hydrogène, de Stewart, Davidson & Simpson (1965) pour les hydrogènes, densité résiduelle de 0,35 et -0,2 pour (I), de 0,25 et $-0.2 \text{ e}^{\text{A}^{-3}}$ pour (II). R = 0.041, wR = 0.054, S = 0.0540,76, $(\Delta/\sigma)_{\text{max}} = 0.5$ (I) et R = 0.034, wR = 0.038, S = 0,84, $(\Delta/\sigma)_{max}$ = 0,3 (II). Les tracés ORTEP (Johnson, 1965) des deux mol-

écules sont représentées sur la Fig. 1(a) and 1(b).

Discussion. Les paramètres atomiques sont donnés dans le Tableau 1.* Les longueurs de liaison et angles de valence sont rassemblés dans le Tableau 2: les deux molécules (I) et (II) ne diffèrent que par le groupement fixé en position 2, acétyl pour (I), acétate de méthyle pour (II). Il existe une remarquable concordance des longueurs de liaison et des angles de valence au niveau du novau oxaphénalène substitué en position 6 par un groupe méthoxy. Ces distances et angles peuvent servir de référence pour toute molécule possédant un noyau oxaphénalène. nos molécules étant, à notre connaissance, les seules avant fait l'objet d'une analyse radiocristallographique. On peut remarquer que:

(a) La liaison C(2)—C(3), voisine de 1,33 Å correspond à une double liaison; ceci est à rapprocher de la liaison C(2)—C(3) du groupement oxyvinylique des nitro-2 naphtofurannes, de 1,34 Å (Ajana, 1987), le groupement 2-nitro oxyvinylique étant le groupement inducteur des propriétés mutagènes et génotoxiques de cette série de molécules. D'une manière générale les liaisons C-C sont assez différentes de celles observéees dans des molécules polycycliques.

(b) Les noyaux oxaphénalène sont quasiment plans: les atomes C(15), O(17) et O(18) s'écartent significativement du plan oxaphénalène, respectivement de 0,084 (3), 0,164 (2) et 0,318 (3) Å (I); les atomes C(15), O(17), O(18) et C(19) s'écartent notablement du noyau oxaphénalène, respectivement de 0,079 (3), 0,046 (3), -0,164 (3) et -0,316 (3) Å (II).

^{*} Les listes des facteurs de structure, des facteurs d'agitation thermique anisotrope et des paramètres des atomes d'hydrogène ont été déposées au dépôt d'archives de la British Library Document Supply Centre (Supplementary Publication No. SUP 53809: 26 pp.). On peut en obtenir des copies en s'adressant à: The Technical Editor. International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Tableau 1. Coordonnées atomiques et coéfficients d'agitation thermique équivalents

 $B_{12} = (4/3) \sum \sum \beta_{12} \beta_{12} a_{13} a_{13}$

Tableau 2. Longueurs de liaisons (Å) et angles de valence (°), avec leurs écart-types, pour les composés (I) *et* (II)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				- <i>ŋŋ </i>					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(I)	x	у	Z	$B_{\rm \acute{e}q}({\rm \AA}^2)$	(I) O(1)—C(2)	1,377 (3)	(II) O(1)—C(2)	1,384
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)					O(1)—C(10)	1,380 (3)	O(1)-C(10)	1,387
C(2) 0.5527 (4) 0.0870 (2) 0.1428 (1) 3.8 (1) C(2)—C(16) 1.482 (4) C(2)—C(16) 1.482 (4) C(3)—C(13) 1.433 (3) C(3)—C(13) 1.434 (3) C(3)—C(13) 1.435 (4) C(4)—C(5) 1.400 (5) -0.0569 (4) 0.2529 (2) 0.2400 (2) 4.7 (11) C(4)—C(13) 1.376 (4) C(4)—C(13) 1.377 (16) 0.1359 (4) 0.0174 (3) 0.4166 (2) 4.3 (11) C(5)—C(6) 1.366 (4) C(5)—C(6) 1.366 (7) 0.1359 (4) 0.0174 (3) 0.4066 (2) 4.3 (11) C(5)—C(18) 1.343 (4) C(6)—C(12) 1.425 (2) 0.2296 (4) -0.0334 (3) 0.4173 (2) 4.3 (1) C(6)—C(14) 1.377 (3) C(6)—O(14) 1.377 (2) 0.2296 (4) -0.0379 (2) 0.3547 (2) 4.3 (1) C(7)—C(18) 1.368 (4) C(7)—C(18) 1.366 (1) 0.4220 (4) 0.0278 (2) 0.2298 (1) 3.3 (1) C(7)—C(18) 1.368 (4) C(7)—C(12) 1.411 (11) 0.2594 (4) 0.1079 (2) 0.3366 (2) 3.9 (1) C(9)—C(10) 1.366 (4) C(9)—C(10) 1.366 (21) 0.1154 (4) 0.1079 (2) 0.3366 (2) 3.9 (1) C(9)—C(10) 1.366 (4) C(9)—C(10) 1.366 (11) 0.2457 (4) 0.1728 (2) 0.1872 (1) 3.6 (1) C(10)—C(11) 1.412 (3) C(10)—C(11) 1.400 (11) -C(12) 1.410 (14) -0.1765 (3) 0.1891 (2) 0.3821 (1) 5.6 (1) C(11)—C(12) 1.430 (3) C(11)—C(13) 1.432 (1) 0.2457 (4) 0.0753 (2) 0.0327 (2) 4.2 (1) O(1)—C(11) 1.412 (3) C(10)—C(11) 1.400 (11) -C(12) 1.410 (11) -C(12) 0.123 (14) 0.0675 (2) 0.0327 (2) 4.2 (1) O(1)—C(13) 1.433 (3) C(11)—C(13) 1.433 (4) 0.0675 (2) 0.0327 (2) 4.2 (1) O(1)—C(13) 1.432 (3) C(11)—C(13) 1.432 (4) 0.0753 (2) 0.0328 (3) 0.1014 (2) 6.0 (2) C(16)—O(18) 1.488 (4) C(16)—O(18) 1.332 (C17) -0.0358 (3) 0.1014 (2) 6.0 (2) C(16)—O(18) 1.488 (4) C(16)—O(18) 1.332 (C17) -0.0358 (3) 0.1014 (2) 6.0 (2) C(16)—O(18) 1.488 (4) C(16)—O(18) 1.333 (1) C(1)=C(12)-C(16) 1.2,7 (2) 0.1)=C(2)=C(13) C(1)=C(13) 1.245 (2) 0.0400 (5) 0.3040 (1) 3.7 (1) O(1)—C(2)=C(13) 1.22,8 (2) O(1)—C(2)=C(13) C(1)=C(1)) 1.400 (1) O(1)-C(2)=C(13) 1.24,6 (2) C(2)=C(1))=C(10) C(1) 1.440 (1) O(1)=C(2)=C(13) 1.24,6 (2) C(2)=C(1))=C(10) C(1) 1.24,6 (2) C(2)=C(1))=C(1) C(1) C(1) 0.25 (1) 0.3344 (2) -0.0358 (3) 0.3152 (1) 3.7 (1) C(2)=C(1)-C(1) 1.24,6 (2)	O(1)	0,5665 (3)	0,0192 (2)	0,2178 (1)	4,2 (1)	C(2)—C(3)	1,333 (3)	C(2)—C(3)	1,325
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)	0,5527 (4)	0,0870 (2)	0,1428 (1)	3,8 (1)	C(2)-C(16)	1,482 (4)	C(2)-C(16)	1,480
$ \begin{array}{c} C(4) & 0.0865 (4) & 0.2460 (2) & 0.1762 (2) & 4.5 (1) & C(4)-C(5) & 1.392 (4) & C(4)-C(5) & 1.400 (2) & 1.076 (4) & C(4)-C(13) & 1.376 (4) & C(4)-C(13) & 1.426 (4) & C(5)-C(6) & 1.366 (4) & C(5)-C(6) & 1.366 (4) & C(6)-C(12) & 1.423 (2) & 0.0354 (12) & 0.3547 (2) & 4.3 (1) & C(6)-C(12) & 1.410 (4) & C(6)-C(12) & 1.410 (4) & C(7)-C(13) & 1.376 (4) & C(7)-C(13) & 1.376 (4) & C(7)-C(13) & 1.366 (4) & C(7)-C(13) & 1.366 (4) & C(7)-C(13) & 1.366 (4) & C(7)-C(13) & 1.430 (4) & C(8)-C(9) & 1.400 (4) & C(8)-C(1) & 1.400 (11) & 0.2457 (4) & 0.1278 (2) & 0.1872 (1) & 3.6 (1) & C(1)-C(11) & 1.401 (3) & C(1)-C(11) & 1.400 (1) & C(1)-C(12) & 1.410 (1) & C(1)-C(12) & 1.411 (2) & C(10)-C(11) & 1.401 (2) & C(1)-C(13) & 1.423 (3) & C(1)-C(13) & 1.423 (3) & C(1)-C(13) & 1.423 (2) & 0.3821 (1) & 5.6 (1) & C(1)-C(12) & 1.430 (3) & C(1)-C(12) & 1.440 (1) & O(1)-C(12) & 1.441 (2) & C(10)-C(11) & 1.402 (2) & O(14)-C(15) & 1.422 (2) & O(14)-C(15) & 1.423 & O(16)-O(18) & 1.334 & O(16) & O(14) & O(14)-C(15) & 1.423 & O(16)-O(18) & 1.334 & O(16) & O(13) & 0.133 (2) & 0.0230 (1) & 5.5 (1) & C(16)-O(18) & 1.488 (4) & C(16)-O(18) & 1.334 & O(16)-O(18) & 1.348 & O(16)-O(18) & 0.377 & O(1)-C(2)-C(3) & C(2)-C(16) & C(2)-C(16) & C(2)-C(16)$	C(3)	0,4041 (4)	0,1605 (2)	0,1268 (2)	3,7 (1)	C(3)—C(13)	1,438 (3)	C(3)-C(13)	1.443
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	0,0865 (4)	0,2460 (2)	0,1762 (2)	4,5 (1)	C(4)-C(5)	1,392 (4)	C(4)-C(5)	1,404
$ \begin{array}{c} C(6) & -0.0449 \ (4) & 0.1867 \ (2) & 0.3149 \ (2) & 4.3 \ (1) & C(5)-C(6) & 1.365 \ (4) & C(5)-C(6) & 1.375 \ (2) & 0.334 \ (3) & 0.4173 \ (2) & 4.5 \ (1) & C(6)-C(12) & 1.430 \ (4) & C(6)-C(12) & 1.435 \ (4) & 0.0379 \ (2) & 0.3547 \ (2) & 4.3 \ (1) & C(6)-C(12) & 1.430 \ (4) & C(7)-C(8) & 1.366 \ (4) & C(7)-C(8) & 1.366 \ (4) & C(7)-C(12) & 1.411 \ (11) & 0.2594 \ (4) & 0.0125 \ (2) & 0.2554 \ (1) & 3.4 \ (1) & C(8)-C(9) & 1.400 \ (4) & C(8)-C(9) & 1.401 \ (2) \ (2) & 0.154 \ (4) & 0.1079 \ (2) & 0.3306 \ (2) & 3.9 \ (1) & C(9)-C(10) & 1.368 \ (4) & C(9)-C(10) & 1.366 \ (1) & C(1)-C(12) & 1.410 \ (4) & C(7)-C(12) & 1.411 \ (11) & 0.2594 \ (4) & 0.1079 \ (2) & 0.3306 \ (2) & 3.9 \ (1) & C(1)-C(12) & 1.400 \ (4) & C(8)-C(9) & 1.400 \ (1) & C(1)-C(12) & 1.400 \ (1) & C(1)-C(13) & 1.432 \ (1) & 0.2457 \ (4) & 0.1891 \ (2) & 0.3821 \ (1) & 5.6 \ (1) & C(1)-C(12) & 1.409 \ (3) & C(1)-C(12) & 1.410 \ (2) \ (2) & 0.3306 \ (2) & 0.3763 \ (3) & 6.3 \ (2) & C(1)-C(12) & 1.409 \ (3) & C(1)-C(12) & 1.402 \ (1) & -C(13) & 1.432 \ (2) \ (1) -C(13) & 1.432 \ (2) \ (2) \ (2) -C(16) \ (1) \ (2) \ (2) -C(16) \ (1) \ (2) \ (2) -C(16) \ (2) \ (2) \ (3) \ (2) \ (3) \ ($	C(5)	- 0,0569 (4)	0,2529 (2)	0,2400 (2)	4,7 (1)	C(4) - C(13)	1.376 (4)	C(4) - C(13)	1.370
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)	-0,0449 (4)	0,1867 (2)	0,3149 (2)	4,3 (1)	C(5)-C(6)	1.365 (4)	C(5)-C(6)	1.366
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7)	0,1359 (4)	0,0374 (3)	0,4066 (2)	4,5 (1)	C(6) - C(12)	1.430 (4)	C(6) - C(12)	1.429
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8)	0,2965 (4)	- 0,0334 (3)	0,4173 (2)	4,7 (1)	C(6) - O(14)	1.372 (3)	C(6)-O(14)	1.372
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9)	0,4442 (4)	-0,0379 (2)	0,3547 (2)	4,3 (1)	$C(7) \rightarrow C(8)$	1.368 (4)	$C(7) \rightarrow C(8)$	1.364
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)	0,4220 (4)	0,0278 (2)	0,2798 (1)	3,6 (1)	C(7) - C(12)	1.410 (4)	C(7) - C(12)	1.411
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)	0,2594 (4)	0,1025 (2)	0,2654 (1)	3,4 (1)	$C(8) \rightarrow C(9)$	1,400 (4)	$C(8) \rightarrow C(9)$	1.402
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)	0,1154 (4)	0,1079 (2)	0,3306 (2)	3,9 (1)	C(9) - C(10)	1.368 (4)	C(9) - C(10)	1.366
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)	0,2457 (4)	0,1728 (2)	0,1872 (1)	3,6 (1)	C(10) - C(11)	1412(3)	C(10) - C(11)	1 406
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(14)	-0,1765 (3)	0,1891 (2)	0,3821 (1)	5,6 (1)	C(11) - C(12)	1,409 (3)	C(11) - C(12)	1.416
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)	-0,3320 (5)	0,2726 (3)	0,3763 (3)	6,3 (2)	C(11) - C(13)	1 433 (3)	C(11) - C(13)	1.426
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)	0,7183 (4)	0,0675 (2)	0,0827 (2)	4,2 (1)	O(14) - C(15)	1 420 (4)	O(14) - C(15)	1 427
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O(17)	0,7394 (3)	0,1333 (2)	0,0203 (1)	5,5 (1)	C(16) - O(17)	1,120 (1)	C(16) = O(17)	1 210
$ \begin{array}{c} (11) \\ (11) \\ (22) \\ (2,7403 (2) \\ (2,7403 (2) \\ (2,799 (5) \\ (3,747 (2) \\ (2) \\ (2) \\ (2) \\ (3) \\ (3) \\ (2) \\ (2) \\ (3) \\ (3) \\ (3) \\ (2) \\ (2) \\ (3) \\ ($	C(18)	0,8493 (5)	-0,0358 (3)	0,1014 (2)	6,0 (2)	C(16) = O(18)	1 488 (4)	C(16) = O(18)	1 331
$ \begin{array}{c} (II) \\ O(1) & 0,8017 (1) & 0,1197 (3) & 0,4631 (1) & 3,9 (1) & (I) \\ C(2) & 0,7403 (2) & 0,2799 (5) & 0,4945 (1) & 3,6 (1) \\ C(3) & 0,6395 (2) & 0,2642 (5) & 0,4767 (1) & 3,7 (1) \\ C(4) & 0,4825 (2) & 0,0400 (5) & 0,4009 (1) & 4,0 (1) \\ C(5) & 0,4377 (2) & -0,1538 (5) & 0,3477 (1) & 4,2 (1) \\ C(5) & 0,4377 (2) & -0,1538 (5) & 0,3477 (1) & 4,2 (1) \\ C(6) & 0,4965 (2) & -0,3130 (5) & 0,3152 (1) & 3,7 (1) \\ C(7) & 0,6692 (2) & -0,4503 (5) & 0,3040 (1) \\ C(8) & 0,7722 (2) & -0,4175 (5) & 0,3265 (1) & 4,1 (1) \\ C(9) & 0,8168 (2) & -0,2252 (5) & 0,3800 (1) & 3,9 (1) \\ C(9) & 0,8168 (2) & -0,2252 (5) & 0,3800 (1) & 3,9 (1) \\ C(11) & 0,6483 (2) & -0,0251 (5) & 0,3285 (1) \\ C(11) & 0,6483 (2) & -0,0251 (5) & 0,3388 (1) & 3,2 (1) \\ C(12) & 0,6049 (2) & -0,0671 (5) & 0,4099 (1) \\ C(12) & 0,6049 (2) & -0,0871 (5) & 0,3388 (1) & 3,2 (1) \\ C(12) & 0,6049 (2) & -0,0871 (5) & 0,3388 (1) & 3,2 (1) \\ C(11) & 0,6483 (2) & -0,0257 (5) & 0,3388 (1) & 3,2 (1) \\ C(12) & 0,6049 (2) & -0,2876 (5) & 0,3347 (1) & 3,3 (1) \\ C(8) - C(7) - C(12) & 120,0 (2) \\ C(13) & 0,5880 (2) & 0,0733 (5) & 0,4222 (1) \\ C(14) & 0,6415 (1) & -0,5081 (4) & 0,2628 (1) \\ C(15) & 0,5544 (2) & -0,550 (6) \\ C(15) & 0,5546 (1) & 0,5581 (4) \\ C(15) & 0,5546 (1) & 0,5581 (1) \\ C(15) & 0,5544 (2) & -0,5560 (6) \\ C(15) & 0,5546 (1) & 0,5581 (1) \\ C(17) & 0,7583 (1) \\ C(17) & 0$. ,					0(10) 0(10)	1,100 (1)	O(18) - C(19)	1.454
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(II)							0(10) 0(11)	.,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(1)	0.8017(1)	0.1197 (3)	0.4631(1)	3.9 (1)	(1)		(11)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)	0.7403 (2)	0.2799 (5)	0,4945 (1)	3.6 (1)	C(2) - O(1) - O(10)	119,1 (2)	C(2)-O(1)-C(10)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)	0.6395 (2)	0.2642 (5)	0.4767 (1)	3.7 (1)	O(1) - C(2) - C(3)	122,8 (2)	O(1) - C(2) - C(3)	•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	0,4825 (2)	0,0400 (5)	0,4009 (1)	4.0 (1)	O(1) - C(2) - C(16)	112,7 (2)	O(1)-C(2)-C(16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)	0.4377 (2)	- 0.1538 (5)	0.3477 (1)	4.2 (1)	C(3) - C(2) - C(16)	124,6 (2)	C(3)-C(2)-C(16)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)	0.4965 (2)	-0.3130(5)	0.3152 (1)	3,7 (1)	C(2) - C(3) - C(13)	121,6 (2)	C(2)-C(3)-C(13	Ś
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7)	0.6692 (2)	-0.4503 (5)	0.3040(1)	3.8 (1)	C(5) - C(4) - C(13)	120,8 (2)	C(5)-C(4)-C(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8)	0.7722(2)	-0.4175(5)	0.3265(1)	4.1 (1)	C(4) - C(5) - C(6)	121.2 (3)	C(4) - C(5) - C(6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9)	0.8168 (2)	-0.2252(5)	0.3800(1)	3.9 (1)	C(5) - C(6) - C(12)	121,2 (3)	C(5)-C(6)-C(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(I0)	0.7549 (2)	- 0.0671 (5)	0.4099 (1)	3.3 (1)	C(5) - C(6) - O(14)	125,4 (2)	C(5)-C(6)-C(14	Ś
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	c(ii)	0.6483 (2)	-0.0919 (5)	0.3888 (1)	3.2 (1)	$C(12) \rightarrow C(6) \rightarrow O(14)$	113,4 (2)	C(12)-C(6)-C(1	ý 4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)	0.6049 (2)	-0.2876 (5)	0.3347 (1)	3,3 (1)	C(8) - C(7) - C(12)	120,0 (2)	C(8)-C(7)-C(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)	0.5860 (2)	0.0733 (5)	0.4222 (1)	3.4 (1)	C(7)-C(8)-C(9)	121.8 (3)	C(7)-C(8)-C(9)	,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(14)	0.4615 (1)	-0.5081(4)	0.2628 (1)	4.4 (1)	C(8) - C(9) - C(10)	118,3 (2)	C(8)-C(9)-C(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)	0.3544 (2)	-0.5560 (6)	0.2421(2)	5.4 (1)	O(1) - C(10) - C(9)	117,4 (2)	O(1)-C(10)-C(9	Ś
O(17) 0,7583 (1) 0,6240 (4) 0,5851 (1) 5,7 (1) $C(9)-C(10)-C(11)$ 122,2 (2) $C(9)-C(10)-C(11)$	C(16)	0.7981 (2)	0.4768 (5)	0.5486 (1)	4.2 (1)	O(1) - C(10) - C(11)	120.4 (2)	O(1) - C(10) - C(1)	'n
	O(17)	0.7583 (1)	0.6240 (4)	0.5851 (1)	5.7 (1)	C(9) - C(10) - C(11)	122.2 (2)	C(9) - C(10) - C(1)	ñ
U(18) = 0.89/2(1) = 0.4/04(4) = 0.5516(1) = 5.1(1) = U(10-U(11)-U(12) = 118.5(2) = U(10)-U(11)-U(12)	0(18)	0.8972 (1)	0,4764 (4)	0.5516(1)	5.1 (1)	C(10)-C(11)-C(12	118.3 (2)	C(10)-C(11)-C(12)
C(19) 0.9582 (2) 0.6794 (7) 0.5987 (2) 6.7 (2) $C(10)-C(11)-C(13)$ 120.2 (2) $C(10)-C(11)-C(13)$	C(19)	0,9582 (2)	0,6794 (7)	0,5987 (2)	6,7 (2)	C(10)-C(11)-C(13) 120,2 (2)	C(10)-C(11)-C(13)
C(12)-C(11)-C(13) 121.5 (2) $C(12)-C(13)$	(,			</td <td></td> <td>C(12) - C(11) - C(13)</td> <td>) 121,5 (2)</td> <td>C(12)-C(11)-C(</td> <td>13)</td>		C(12) - C(11) - C(13)) 121,5 (2)	C(12)-C(11)-C(13)
C(6) - C(12) - C(7) 123.8 (2) $C(6) - C(12) - C(7)$						C(6) - C(12) - C(7)	123.8 (2)	C(6)-C(12)-C(7) ´
C(6) - C(12) - C(11) 116.8 (2) $C(6) - C(12) - C(11)$						C(6) - C(12) - C(11)	116.8 (2)	C(6) - C(12) - C(1)	Í)
C(7) - C(12) - C(11) 119.4 (2) $C(7) - C(12) - C(11)$. .				C(7) - C(12) - C(11)	119,4 (2)	C(7)-C(12)-C(1	ń

(c) Les angles de torsion valent respectivement: C(3)-C(2)-C(16)-O(17) = 11,2 (3) (I) et $6,1 (3)^{\circ}$ $C(3)-C(2)-C(16)-C(18) = -172,9(2)^{\circ}(I),$ (II), $C(3)-C(2)-C(16)-O(18) = -167,3 (3)^{\circ} (II),$ $C(2)-C(16)-O(18)-C(19) = 175,0 (3)^{\circ}$ (II).

Le recouvrement des molécules en (x, y, z) et (1 +x, y, z), dont les plans moyens sont a 3,3 Å, est faible pour (II) et quasi-inexistant pour (I). La cohésion cristalline est essentiellement assurée par des interactions de van der Waals entre molécules voisines. Les charges électriques ponctuelles partielles, exprimées en electrons, ont été calculées grâce au logiciel MOPAC (Stewart, 1988, 1989) et sont données dans le Tableau 3. On peut remarquer que ces charges sont très voisines et ne diffèrent notablement que pour les atomes O(1), C(3), H(103), C(11) et C(13) pour la partie commune de ces deux molécules; curieusement les atomes C(2) et C(10) gardent des charges identiques. Les charges sont bien entendu très différentes dans les groupements acétyle et acétate de méthyle.

Les deux molécules étudiées ici possèdent des géométries quasi-identiques. Le caractére éthylénique renforcé de la double liaison C(2)—C(3) du squelette (4)

 $\begin{array}{c} (3) \\ (4)$

117,9 (2) 123,7 (2) 113,2 (2) 123,2 (2) 121,3 (3) 121,2 (3) 120,7 (3) 121,0 (2) 125,9 (2) 113,2 (2) 119,9 (2) 121,7 (3) 118,7 (2) 117,1 (2) 120,8 (2) 122,1 (2) 118,3 (2) 120,6 (2) 121,1 (2) 123,2 (2) 117,3 (2)

119.4(2)

125,5 (2)

115,7 (2)

118,8 (2)

117,3 (2)

122,9 (2)

112,9 (2)

124,2 (3)

116,2 (2)

Tat	oleau	3.	Charges	electriques	ponctuelles	partielle.	S
-----	-------	----	---------	-------------	-------------	------------	---

C(3) - C(13) - C(11)

C(4) - C(13) - C(11)C(6) - C(14) - C(15)

C(2)-C(16)-O(17) C(2)-C(16)-O(18)

O(17)-C(16)-O(18)

C(16)-C(18)-C(19)

C(3)-C(13)-C(4)

en e

125,7 (2)

115,9 (2)

118,5 (2)

117,7 (2)

119,6 (2) 117,4 (2)

123,0 (3)

C(3) - C(13) - C(4)

C(3)-C(13)-C(11)

C(4)-C(13)-C(11)

C(6)-C(14)-C(15)

C(2)—C(16)—C(17) C(2)—C(16)—C(18)

C(17) - C(16) - C(18)

0 C

	(1)	(11)		(1)	(11)
O(1)	-0,115	-0,137	C(16)	0,270	0,358
C(2)	- 0,036	- 0,036	O(17)	- 0,252	-0,315
C(3)	-0,138	- 0,082	C(18)	- 0,261	
C(4)	- 0,092	- 0,079	O(18)		-0,279
C(5)	- 0,158	-0,167	C(18)	-0,266	
C(6)	0,093	0,106	H(103)	0,138	0,082
C(7)	- 0,160	- 0,164	H(104)	0,137	0,141
C(8)	- 0,093	- 0,093	H(105)	0,153	0,155
C(9)	- 0,160	-0,156	H(107)	0,134	0,138
C(10)	0,073	0,083	H(108)	0,138	0,141
C(11)	- 0,031	- 0,052	H(109)	-0,160	-0,156
C(12)	- 0,038	- 0,048	H(151)	0,076	0,076
C(13)	- 0,065	- 0,088	H(152)	0,076	0,076
O(14)	-0,217	-0,221	H(153)	0,106	0,107
C(15)	- 0,073	- 0,069	H(118)	0,116	
			H(218)	0,106	
			H(318)	0,106	
			H(119)		0,116
			H(219)		0,088
			H(319)		0,106

de l'oxaphénalène est tout a fait cohérent avec une forte activité génotoxique des dérivés α -nitrés de cette série. Il apparaît aussi que, d'une manière générale, les liaisons C—C sont assez différentes de celles observées dans des molécules polycycliques connues.

References

AJANA, A. (1987). Thèse, Bordeaux, France.

Ajana, A., Bideau, J.-P., Cotrait, M., Buisson, J.-P., Demerseman, P., Einhorn, J. & Royer, R. (1988). *Eur. J. Med. Chem.* 23, 341–346.

- BUISSON, J.-P. & ROYER, R. (1988). J. Heterocycl. Chem. 25, 539–542.
- GILMORE, C. J. (1984). J. Appl. Cryst. 17, 42-46.
- JOHNSON, C. K. (1965). ORTEP. Rapport ORNL-3794. Oak Ridge National Laboratory, Tennessee, EU.
- PLATZER, N., BUISSON, J.-P. & DEMERSEMAN, P. (1991). Org. Magn. Reson. Sous presse.
- ROYER, R. & BUISSON, J.-P. (1986). Ann. Pharm. Fr. 44, 177–189.
 ROYER, R., BUISSON, J.-P., VLEMINCKX, C. & MOENS, W. (1986).
 Eur. J. Med. Chem. 21, 352–354.
- STEWART, J. J. P. (1988). QCPE Program No. 455. Department of Chemistry, Indiana Univ., Indiana, EU.
- STEWART, J. J. P. (1989). J. Comput. Chem. 10, 209-222.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.

Acta Cryst. (1991). C47, 1670–1672

The Rearrangement of Coumarin-4-acethydrazides. Structure of 1-Amino-4-(2-hydroxy-4-methoxyphenyl)-2,6(1*H*,3*H*)-pyridinedione*

BY NEIL BAGGETT, MARTIN A. CASE, JEAN-D. FOULON, CHARLES J. GRAY AND THOMAS A. HAMOR

School of Chemistry, University of Birmingham, Birmingham B15 2TT, England

(Received 13 August 1990; accepted 13 December 1990)

Abstract. $C_{12}H_{12}N_2O_4$, $M_r = 248.2$, triclinic, $P\overline{1}$, a = 6.793 (2). b = 7.209 (11), c = 11.405 (4) Å, $\alpha = 88.77$ (7), $\beta = 89.06$ (2), $\gamma = 74.62$ (6)°, V =538.35 Å³, Z = 2, $D_x = 1.531$ g cm⁻³, λ (Mo K α) = 293 K, R = 0.0452 for 1011 observed reflections. A substituted 4-phenyl-2,6(1H,3H)-pyridinedione crystallizes with coplanar rings [angle between ring planes 2.3 (3)°]. No π delocalization between the rings is present [ring to ring bond length 1.481 (4) Å] and the double bond is localized within the heterocycle [bond length 1.356(5) Å]. The heterocyclic moiety is planar (r.m.s. deviation from plane = 0.013 Å).

Introduction. Baker, Haksar & McOmie (1950) have described the synthesis of acyl hydrazides derived from coumarin-carboxylic acids and their use as fluorescent reagents in chromatographic separations of carbonyl compounds.

While reinvestigating the synthesis of 7-hydroxycoumarin-4-acethydrazide, a base-catalyzed rearrangement of the ring system was observed. The rearranged compound was difficult to work with due to its very low solubility in solvents other than dimethyl sulfoxide (DMSO). In order to further understand the rearrangement the analogous 7methoxy-4-acethydrazide (I) was prepared and similarly rearranged.

The new material was purified without difficulty, but the spectral data were ambiguous. Previous workers (Pednekar, Samant & Deodhar, 1984; Peet & Sunder, 1986) have described similar compounds from the condensation of acethydrazides but there is some doubt as to whether a six (II) or a seven (III) membered ring results from the closure of the new heterocycle (see scheme).

To resolve this question the structure of the rearranged product has been elucidated and shown to be 1-amino-4-(2-hydroxy-4-methoxyphenyl)-2,6-(1H,3H)-pyridinedione (II).

© 1991 International Union of Crystallography

^{*} Contribution from the Crystallography Unit, Universities of Aston and Birmingham.